Canard Solutions at Non-generic Turning Points
نویسندگان
چکیده
This paper deals with singular perturbation problems for vector fields on 2-dimensional manifolds. “Canard solutions” are solutions that, starting near an attracting normally hyperbolic branch of the singular curve, cross a “turning point” and follow for a while a normally repelling branch of the singular curve. Following the geometric ideas developed by Dumortier and Roussarie in 1996 for the study of canard solutions near a generic turning point, we study canard solutions near non-generic turning points. Characterization of manifolds of canard solutions is given in terms of boundary conditions, their regularity properties are studied and the relation is described with the more traditional asymptotic approach. It reveals that interesting information on canard solutions can be obtained even in cases where an asymptotic approach fails to work. Since the manifolds of canard solutions occur as intersection of center manifolds defined along respectively the attracting and the repelling branch of the singular curve, we also study their contact and its relation to the “control curve”.
منابع مشابه
Asymptotic expansion of planar canard solutions near a non-generic turning point
This paper deals with the asymptotic study of the so-called canard solutions, which arise in the study of real singularly perturbed ODEs. Starting near an attracting branch of the ”slow curve”, those solutions are crossing a turning point before following for a while a repelling branch of the ”slow curve”. Assuming that the turning point is degenerate (or non-generic), we apply a correspondence...
متن کاملOn the Limit Cycles of a Class of Planar Singular Perturbed Differential Equations
Relaxation oscillations of two-dimensional planar singular perturbed systems with a layer equation exhibiting canard cycles are studied. The canard cycles under consideration contain two turning points and two jump points. We suppose that there exist three parameters permitting generic breaking at both the turning points and the connecting fast orbit. The conditions of one (resp., two, three) r...
متن کاملThe Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کاملInfinite product representation of solution of indefinite SturmLiouville problem
In this paper, we investigate infinite product representation of the solution of a Sturm- Liouville equation with an indefinite weight function which has two zeros and/or singularities in a finite interval. First, by using of the asymptotic estimates provided in [W. Eberhard, G. Freiling, K. Wilcken-Stoeber, Indefinite eigenvalue problems with several singular points and turning points, Math. N...
متن کاملAn Experimental Investigation of the Effects of Canard Position on the Aerodynamic Forces of a Fighter Type Configuration Model
An extensive experimental investigation is conducted to study the effect of canard position relative to the fuselage reference line on the aerodynamic forces of a fighter type configuration model. Aerodynamic forces at different flight conditions are measured in a subsonic wind tunnel. The wing and the canard have triquetrous shapes. Experiments are conducted at Reynolds number of 342209 and at...
متن کامل